NBTI-Aware Transient Fault Rate Analysis Method for Logic Circuit Based on Probability Voltage Transfer Characteristics

نویسندگان

  • Zhi-Ming Yang
  • Jun-Bao Li
  • Yang Yu
  • Xiyuan Peng
چکیده

The reliability of Very Large Scale Integration (VLSI) circuits has become increasingly susceptible to transient faults induced by environmental noise with the scaling of technology. Some commonly used fault tolerance strategies require statistical methods to accurately estimate the fault rate in different parts of the logic circuit, and Monte Carlo (MC) simulation is often applied to complete this task. However, the MC method suffers from impractical computation costs due to the size of the circuits. Furthermore, circuit aging effects, such as negative bias temperature instability (NBTI), will change the characteristics of the circuit during its lifetime, leading to a change in the circuit’s noise margin. This change will increase the complexity of transient fault rate estimation tasks. In this paper, an NBTI-aware statistical analysis method based on probability voltage transfer characteristics is proposed for combinational logic circuit. This method can acquire accurate fault rates using a discrete probability density function approximation process, thus resolving the computation cost problem of the MC method. The proposed method can also consider aging effects and analyze statistical changes in the fault rates. Experimental results demonstrate that, compared to the MC simulation, our method can achieve computation times that are two orders of magnitude shorter while maintaining an error rate less than 9%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Fault Current Limiter in Voltage Drop and TRV Considering Wind Farm

Influence of distributed generation systems in the distribution systems can increase the level of short-circuit current. The effectiveness of distributed generation systems is affected by the size, location, type of distributed generation systems technology, and the methods of connecting to distribution systems. Wind turbine system is the examples of distributed generation source. Not only does...

متن کامل

NBTI - aware Dual V th Assignment for Leakage Reduction and Lifetime Assurance ∗

Negative bias temperature instability (NBTI), which causes temporal performance degradation in digital circuits by affecting PMOS threshold voltage, has become the dominant circuit lifetime reliability factor. Design for lifetime reliability, especially for NBTI-induced circuit performance degradation, is emerging as one of the major design concerns. In this paper, an NBTI-aware dual Vth assign...

متن کامل

Soft error estimation and mitigation of digital circuits by characterizing input patterns of logic gates

Soft errors caused by particles strike in combinational parts of digital circuits are a major concern in the design of reliable circuits. Several techniques have been presented to protect combinational logic and reduce the overall circuit Soft Error Rate (SER). Such techniques, however, typically come at the cost of significant area and performance overheads. This paper presents a low area and ...

متن کامل

Transient Stability Enhancement in Microgrids Including Inverter Interfaced Distributed Generations

With increasing the presence of Microgrids (MGs) in the power systems, investigating the MG stability during transient faults is necessary. This study investigates the transient stability analysis of a MG supplied by multiple inverter interfaced distributed generations (IIDGs) during fault. The transient stability of a MG is highly depends on the IIDGs control strategy. A MG, simulated on Matla...

متن کامل

Diagnosis of Different Types of Air-Gap Eccentricity Fault in Switched Reluctance Motors Using Transient Finite Element Method

This paper presents a method for diagnosis of eccentricity fault in a switched-reluctance motor (SRM) during offline and standstill modes. In this method, the fault signature is differential induced voltage (DIV) achieved by injecting diagnostic pulses to the motor windings. It will be demonstrated by means of results that there is a correlation between differential induced voltage and eccentri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Algorithms

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016